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New Structural Model for Parachute Inflation Simulations 

1.   FORWARD 

The deployment, inflation, terminal descent and landing of a parachute system are 
extremely complex aerodynamic phenomena. These processes are governed by nonlinear 
time-dependent coupling between the parachute system and surrounding airflow, large 
canopy shape changes, and unconstrained motion of the parachute through the fluid 
medium. Due to these complexities, parachute systems have historically been designed 
using a semi-empirical approach supplemented by extensive testing. This approach to 
design is time-consuming, expensive, and stifles innovation. 

During the last decade, the demands placed on parachute designers have increased 
significantly. Payload costs have increased, mission requirements have become more 
stringent, and the flight testing needed to develop new systems have become more costly. 
In light of these demands, the traditional semi-empirical approach to design is 
inadequate. 

Computational methods have the greatest potential for providing engineers with the 
necessary predictive tools for parachute design. Although numerous commercial finite 
element codes exist, these codes lack the theoretical robustness needed for parachute 
simulations. Furthermore, these codes are closed to the users and therefore can not be 
easily modified by the users for their specific needs. 

In this research project, a new structural model has been developed for simulation of 
parachute dynamics. This model has been coupled with an existing Computational Fluid 
Dynamics (CFD) model to simulate the interaction between the parachute and 
surrounding air flow. The structural model has been incorporated into a computer code 
which is continuously tailored for parachute simulations. As a result, it has been 
demonstrated that computer simulation of parachute dynamics, despite its complexity, is 
a realizable goal. This capability provides engineers with a "virtual proving ground" to 
evaluate candidate systems and will ultimately reduce the time and cost of establishing 
reliable parachute designs. 
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4.   PROBLEM STATEMENT 

The primary goal of this project was to develop a robust structural model to accurately 
and efficiently simulate the dynamic behavior of parachute systems. To accomplish this, 
the following specific problems were addressed: 

• Since parachute fabrics can not support compressive stresses, "wrinkling" occurs at 
the onset of compression. The effect of "wrinkling" on parachute simulations was 
examined. 

• Parachute fabrics are orthotropic. The importance of orthotropy on parachute 
behavior was not known. An orthotropic material model was developed to 
investigate this. 

• After the initial deployment and prior to inflation, the parachute is negligibly 
stressed and the behavior is highly transient. Several approaches were formulated to 
effectively stabilize the numerical solution during this phase. 

• The most efficient and accurate nonlinear transient solution algorithm for parachute 
simulations is not known a priori. A suite of algorithms was developed to evaluate 
this. 

• Parachute systems utilize several specific operations for control which dramatically 
effect their dynamic behavior. These include line length control and controlled 
disreefing. The ability to model these operations was developed and evaluated. 

• The true behavior of parachute dynamics involves coupling between the parachute 
and surrounding air flow. A coupled solution, however, is considerably more 
difficult to perform than a stand-alone structural simulation. The ability to include 
approximate fluid forces in stand-alone structural simulations was developed and 
evaluated. 

• In addition to the global dynamic behavior of a parachute system, canopy and cable 
stresses are also critical to design. A method to evaluate dynamic stresses in 
parachute systems was developed. 

• Numerous parachute systems of practical interest possess cyclically symmetric 
geometry. Special techniques that account for this symmetry to reduce the 
computational requirements were developed. 

• Transition of this basic research to address specific Army needs for parachute 
modeling was a continuous objective of this project. 



5.   SUMMARY OF RESULTS 

The primary result of this research project is that large scale finite element modeling of 
parachute dynamics is feasible provided that a robust structural model is used [1], Our 
structural model has been implemented in a computer code which is used extensively by 
engineers at the U.S. Army Soldier Systems Center (Natick) and is continuously tailored 
to address specific Army airdrop needs. The structural model can be used with existing 
CFD models, such as those developed by the Army High Performance Computing 
Research Center (AHPCRC) at Rice University, to perform fully coupled parachute 
simulations. In developing this structural model, the following specific results were 
identified: 

• Modeling the effect of "wrinkling " is essential in parachute simulations; 

Three wrinkling algorithms which account for large deformations and orthotropic 
materials were formulated and implemented [2, 3, 4]. Alternate algorithms were 
investigated to provide a comparison between predicted results and computational 
efficiency. All the wrinkling algorithms effectively remove all compressive stress. 
Good agreement between the various algorithms was obtained. 

Results obtained with and without wrinkling were dramatically different. The 
inflated shape of a parachute obtained without wrinkling was intuitively incorrect, 
whereas the shape obtained with wrinkling was much more realistic. Investigation of 
the minimum principal stress obtained without wrinkling revealed large regions and 
time periods where large compressive stress exist which adversely effect the 
predicted shape. Results of several simulations with and without wrinkling are given 
in the Appendix. 

Comparison between numerical simulations and experiments of membrane wrinkling 
were performed at the South Dakota School of Mines and Technology [5, 6]. These 
experiments are extremely valuable for verifying numerical simulations since 
analytical solutions for wrinkling of membranes undergoing large deformation are 
not available. 

• Material orthotropy has a major effect on the predicted behavior. 

Orthotropic material relations which account for large membrane deformation were 
formulated and implemented. A number of example problems were run which 
demonstrate the dramatic difference between isotropic and orthotropic material 
responses. Except for this work, no other research has addressed wrinkling of 
orthotropic membranes subject to large deformations in a rigorous manner [2]. A 
comparison of results for an isotropic and orthotropic membrane with wrinkling is 
given in the Appendix. 



Special techniques are required to stabilize the numerical solution after initial 
deployment and prior to inflation when the parachute is negligibly stressed and the 
motion is highly dynamic: 

Two approaches were developed to address this difficulty. The first was to 
implement time-dependent user-defined global damping. This allows the user to 
prescribe a global damping history which starts at a large value (to stabilize the 
solution) and decreases with time to a negligible value (so the global motion is not 
effected). This approach has been used extensively in simulations performed at 
Natick [7]. 

The second approach was to formulate two new special elements, called "kink" and 
"fold" elements, which provide local damping at cable nodes and membrane edges, 
respectively [8]. Numerical tests demonstrated that these elements effectively 
stabilize the solution without adversely effecting the predicted global response and 
allow for an increased time step which significantly reduces the computational effort. 
A comparison of results obtained with and without these special elements is given in 
the Appendix. 

For the majority of parachute simulations, implicit time-integration algorithms 
combined with an iterative equation solver was most efficient: 

Three nonlinear transient solution algorithms were implemented in the structural 
code. The first uses implicit time integration with a direct equation solver and a band 
width minimization algorithm. The second is a conditionally stable explicit method. 
The third uses implicit time integration with an iterative equation solver [9]. The 
third was installed collaboratively with Natick engineers using an iterative solver 
developed by the AHPCRC at Rice University [10]. Results obtained using the three 
solvers on the same simulation showed excellent agreement. 

Through numerous simulations, it has been found that the third solver is most 
computationally efficient for parachute simulations. The only limitation of the third 
solver is that it requires diagonal dominance of the system matrix which is only 
violated in special cases, such as when general constraint equations are prescribed. 

Implementation of a band width minimization algorithm for the first solver 
significantly improved its efficiency [11]. Without additional modifications to the 
second solver, the critical time step needed for algorithmic stability is prohibitively 
small for typical parachute simulations. 

It is possible to simulate typical parachute control operations and disreefing with the 
structural model. 

User-defined time dependent cable length changes and cable failure were 
implemented in the structural model. These capabilities allow for simulation of 
parachute control operations and disreefing.   Numerous simulations utilizing these 



capabilities have been performed which demonstrate their usefulness for parachute 
simulations [12]. Several results demonstrating these capabilities are given in the 
Appendix. 

Development of approximate fluid forces allows for realistic simulation of parachute 
dynamics using only a structural model. 

Aerodynamic drag on cables and payload masses undergoing large displacements was 
implemented in the structural model [7]. These effects, along with user-defined time 
dependent membrane pressure, allow for approximate modeling of fluid forces in a 
stand-alone structural simulation. Since structural simulations are considerably less 
difficult to perform than fully coupled simulations, this capability allows for rapid 
evaluation of a parachute's dynamic behavior. 

Stress projection algorithms allow for dynamic evaluation and visualization of 
canopy stresses. 

A stress projection algorithm for parachutes undergoing large displacements was 
formulated and implemented in the structural model. This algorithm is a 
generalization of those used for small deformation linear elastic problems [13]. The 
algorithm allows for dynamic visualization of canopy stresses which is critical for 
evaluation of parachute system performance. 

*   For parachute simulations that are cyclically symmetric, the model can be reduced 
to a single section which significantly reduces the computational requirements. 

Local nodal coordinate systems were formulated and implemented in the structural 
model. This capability allows for modeling an entire round canopy using a single 
gore [12]. Since typical round canopies consist of thirty to sixty-four gores, this 
capability significantly reduces the model size and solution time. 

Significant transfer of the basic research performed under this project was 
accomplished. 

New structural modeling capabilities have been continuously incorporated into a 
computer code which is used extensively by engineers at Natick to perform parachute 
dynamics simulations. Eleven publications co-authored by the principal investigators 
and Natick personnel resulted from this collaborative research. 

Two awards were received during the project period. The University of Connecticut 
received the 1998 Commander's Educational Award for Excellence from the U.S. 
Army Soldier Systems Command (SSCOM) for significantly advancing SSCOM's 
airdrop modeling capability. Co-authors from Natick and the University of 
Connecticut received a Best Papers Award at the 21st Army Science Conference. 
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10. APPENDIX A: Selected Results from Numerical Simulations 

• 

• 

• 

• 

Square Airbag Inflation Problem: This example shows a comparison between the 
inflated shapes of a square airbag obtained with and without the wrinkling algorithm. 
The predicted shapes are extremely different. Examination of the stresses show that 
the solution obtained without wrinkling contains large compressive principal stresses. 
The predicted solution with wrinkling has no compressive stresses and is intuitively 
more correct. 

C-9 Inflation Problem: This example shows a comparison between the shapes of a 
round canopy parachute undergoing inflation obtained with and without the wrinkling 
algorithm. The canopy is initially in a highly folded unstressed configuration. The 
shape at three different times during inflation are shown. The results obtained using 
wrinkling are physically more correct than those obtained without wrinkling. These 
results clearly demonstrate that wrinkling is extremely important in parachute 
simulations. 

Wrinkling of Isotropie and Orthotropic Disk: This example shows the principal 
stress vectors for an annular membrane which is twisted in plane. Results are given 
for an isotropic and orthotropic membrane. For both cases, the wrinkling algorithm is 
used. The predicted stress distributions for these two cases are extremely different 
indicating that material orthotropy has a strong effect on the internal stress 
distribution. 

Falling Ribbon Problem: This example shows the transient response of a initially 
square ribbon subjected to constant internal pressure which falls under the influence 
of gravity. Three sets of results are given which correspond to (ND) No Damping, 
(FD) Fold Damping, and (MPD) Mass Proportional Damping. The ND and FD cases 
fall at the correct rate, whereas the MPD case is damped out and fails to fall. The 
time history of the velocity for the FD case is much smoother than the ND case 
demonstrating that the fold damping effectively damps spurious accelerations without 
effecting the global motion. The time step used for the FD case was ten times larger 
than the ND case indicating that the fold damping effectively stabilizes the solution 
which significantly reduces the computations required for the simulation. 

Simple Square Canopy Problem: This example shows the transient response of a 
simple parachute using kink and fold damping (KFD) and no damping (ND). The 
parachute consists of a square canopy with four suspension lines. The same time step 
is used for the KFD and ND cases. For the KFD case, the canopy opens smoothly 
and a stable inflated shape is achieved. For the ND case, the opening is highly 
chaotic and the numerical simulation becomes unstable. This simulation 
demonstrates that the kink and fold elements effectively stabilize the solution during 
the initial opening phase. 

11 



T-10 Inflated Shape and Maximum Principal Stress Contours: This example 
shows how the principal stresses can be evaluated and displayed for various 
parachute simulations. 

12 
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C-9 Inflation Problem 

No Wrinkling 
DEFORMED GEOMETRY WfTH ELEMENTS (3-D PROBLEM) 

: :      Tio.131 

,.■>'4i«'t^^^N^•^•. 

-6-4-2024 
X-AXIS 

DEFORMED GEOMETRY WITH ELEMENTS (3-D PROBLEM) 

• : ■      Tio.24 

 ' ■■- 

-10     -a      -6 

-10       -8 -6 

Wrinkling 
DEFORMED GEOMETRY WrTH aEMENTS (3-0 PROBLEM) 

TJO.198 

-st- ;■ 
-10       -8        -6 

' * i ' '■■ 
-2 0 2 4 6 8 10 

X-AXIS 

DEFORMED GEOMETRY WITH ELEMENTS (3-D PROBLEM) 

-6-4-202468 10 
X-AXIS 

DEFORMED GEOMETRYWn» ELEMENTS (3-D PROBLEM) 

-10       -8 -6 -4-20246 
X-AXIS 



Wrinkling of Isotropie and Orthotropic Disk. 

fixed edge 

Principal Stress Vectors 
Isotropie Membrane 

Principal Stress Vectors 
Orthotropic Membrane 



Falling Ribbon Problem 
ND = No Damping 
FD = Fold Damping 
MPD = Mass Proportional Damping 
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Simple Square Canopy Problem 
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